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We study the properties of the Google matrix generated by a coarse-grained Perron-Frobenius operator of the
Chirikov typical map with dissipation. The finite-size matrix approximant of this operator is constructed by the
Ulam method. This method applied to the simple dynamical model generates directed Ulam networks with
approximate scale-free scaling and characteristics being in certain features similar to those of the world wide
web with approximate scale-free degree distributions as well as two characteristics similar to the web: a
power-law decay in PageRank that mirrors the decay of PageRank on the world wide web and a sensitivity to
the value « in PageRank. The simple dynamical attractors play here the role of popular websites with a strong
concentration of PageRank. A variation in the Google parameter « or other parameters of the dynamical map
can drive the PageRank of the Google matrix to a delocalized phase with a strange attractor where the Google

search becomes inefficient.
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I. INTRODUCTION

The world wide web (WWW) continues its striking ex-
pansion going beyond 10'" web pages [1]. Information re-
trieval from such an enormous database becomes the main
challenge for WWW users. An efficient solution, known as
the PageRank algorithm (PRA) proposed by Brin and Page
in 1998 [2], forms the basis of the Google search engine used
by the majority of internet users in everyday life. The PRA is
based on the construction of the Google matrix which can be
written as (see, e.g., [3] for details):

G=aS+(1-a)E/N. (1)

Here the matrix S is constructed from the adjacency matrix
A of directed network links between N nodes so that S;;
=A;j/ZA; and the elements of columns with only zero ele-
ments are replaced by 1/N. The second term on the right-
hand side (rhs) of Eq. (1) describes a finite probability 1
—a for a WWW surfer to jump at random to any node so that
E;;=1. This term stabilizes the convergence of the PRA by
introducing a gap between the maximal eigenvalue A=1 and
the other eigenvalues \;. Usually the Google search uses the
value @=0.85 [3]. By construction =,G;;=1 so that the asym-
metric matrix G has a left eigenvector that is a homogeneous
constant for A=1. The right eigenvector at A=1 is the Pag-
eRank vector with positive elements p; and X;p;=1 (the
components of this vector give the values p;). All WWW
nodes can be ordered by decreasing p; so that the PageRank
plays a role in the ordering of websites and information re-
trieval. The classification of nodes in terms of the decreasing
order of p; values is used to classify importance of network
nodes, as it is described in more detail in [3] (at least this is
an important element of the WWW ranking used by Google
but additional criteria are also used). The information re-
trieval and ordering is based on this classification and we
also use it in the following.

It is interesting and important to note that by construction
the operator G belongs to the class of Perron-Frobenius op-
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erators [3]. Such type operators naturally appear in ergodic
theory [4] and in the description of dynamical systems with
Hamiltonian or dissipative dynamics [5,6].

The numerical studies of properties of G are usually done
only for the PageRank vector which can be found efficiently
by the PRA due to a relatively small average number of links
in the WWW (we have not found numerical data on the
spectrum of G in the available literature, see however
[3,7-11]). It is established that for large WWW subsets p; is
satisfactory described by a scale-free algebraic decay with
pi~1/ jP, where j is the PageRank ordering index and
~0.9 [3,7]. Studies of PageRank properties are now very
common within the computer science community and they
are presented in a number of interesting publications (see,
e.g., [8-10] and an overview of the field in [11]). Also a
number of rigorous mathematical results have been obtained
in this field (see, e.g., [11,12]).

While the properties of the PageRank vector are of pri-
mary importance, it is also interesting to analyze the proper-
ties of the Google matrix G as a whole large matrix. Such an
analysis can help to establish links between the Google ma-
trix and other fields of physics where large matrices play an
important role. Among such fields we can mention the ran-
dom matrix theory [13] which finds applications in a descrip-
tion of spectra in complex many-body quantum systems and
Anderson localization, which is an important physical phe-
nomenon for electron transport in disordered systems (see,
e.g., [14]). A transition from localized to delocalized eigen-
states also can take place in networks of small world type
(see [15,16]). However, in the physical systems considered in
[13-16] all matrices are Hermitian with real eigenvalues,
while the Perron-Frobenius matrices have generally complex
eigenvalues.

A recent attempt to analyze numerically the properties of
right eigenvectors ¢; (Gy;=\;1;) and complex eigenvalues
\; was done in [17]. The Google matrix was constructed
from a directed network generated by the Albert-Barabasi
model and the WWW University networks with randomiza-
tion of links. The Google matrix was considered mainly for
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the value @=0.85. It was shown that under certain conditions
a delocalized phase emerges for the PageRank and other
states having complex \. In spite of a number of interesting
results found in [17] a weak feature of the models used there
is a significant gap between A=1 of the PageRank vector of
matrix S (or matrix G at a=1) and |\;/=0.4 for the other
vectors. We note that according to [17] the University net-
works have |\;| close to 1 but after randomization of links a
large gap emerges in the spectrum of \. This gap in |\| was
rather large and hence the PageRank vector itself was not
very sensitive to a. In contrast, for the real WWW it is know
that p; is rather sensitive to a due to the existence of |\
close to 1 [3,17]. Thus the results obtained in [17] show that
even if the Google matrix is constructed on the basis of typi-
cal models of scale-free networks, it is quite possible that its
spectrum may have a large gap for 0.85=a=1 (thus being
rather far from spectral properties of the Google matrices of
the WWW). Therefore, it is rather desirable to have other
simple models which generate a directed network with
Google matrix properties being close to those of WWW.

With an aim to having more realistic models, we develop
in this work another approach and construct the Google ma-
trix from the Perron-Frobenius operator generated by a cer-
tain dynamical system. The probability flow in dynamical
system models has rich and nontrivial features of general
importance such as simple and strange attractors with local-
ized and delocalized dynamics governed by simple dynami-
cal rules. Such objects are generic for nonlinear dissipative
dynamics and hence can have relevance for actual WWW
structure. Thus these objects can find some reflections in the
PageRank properties. The dynamical system is described by
the Chirikov typical map [18] with dissipation, the properties
of this simple model have been analyzed in detail in a recent
work [19]. We find that the Google matrix generated by this
dynamical model has many A; close to 1 and the PageRank
becomes sensitive to « (see Fig. 1). This model also captures
other specific properties of the WWW Google matrices such
as an approximate power-law degree distribution and PageR-
ank decay close to the web (see Figs. 4 and 6).

To construct a network of nodes from a continuous two-
dimensional phase space, we divide the space of dynamical
variables (x,y) on N=N, X N, cells (we use N,=N,). Then N,
trajectories are propagated from a cell j over the whole pe-
riod of the dynamical map and the elements S;; are taken to
be equal to a relative number N; of trajectories arrived at a
cell i (S;=N;/N. and 2;S;;=1). Thus S gives a coarse-
grained approximation of the Perron-Frobenius operator for
the dynamical map. The Google matrix G of size N is con-
structed from S according to Eq. (1). We use sufficiently
large values of N, so that the properties of G become insen-
sitive to N,.

Such a discrete approximation of the Perron-Frobenius
operator is known in dynamical systems as the Ulam method
[20]. Indeed, Ulam conjectured that such a matrix approxi-
mant correctly describes the Perron-Frobenius operator of
continuous phase space. For hyperbolic maps the Ulam con-
jecture was proven in [21]. Various types of more generic
one-dimensional maps have been studied in [22-24]. Further
mathematical results have been reported in [25-28] with ex-
tensions and proof of convergence for hyperbolic maps in
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FIG. 1. (Color online) PageRank p ; for the Google matrix gen-
erated by the Chirikov typical map (2) at T=10, k=0.22, =0.99
(set T'10, top row), and T=20, k=0.3, 7=0.97 (set 720, bottom row)
with @=1 (left column), 0.95 (middle column), 0.85 (right column);
the value of index j is a function of the cell index in the map phase
space (i,;i,) (see text), here p; is plotted in phase space of the map
using the above relation between j and (i,,i,). The phase space
region 0=x<27;—m=y < is divided on N=3.6 X 10> cells; pjis
zero for black and maximal for white.

higher dimensions. However, the studies of more generic
two-dimensional maps remain rather restricted (see, e.g.,
[29]) and nonsystematic. In principle the construction of di-
rected graphs on the basis of dynamical systems is a known
mathematical approach (see, e.g., [6]) but the spectral prop-
erties of the Google matrix built on such graphs were not
studied until now.

Of course, one can construct other type of models of the
Google matrix (see, e.g., copying models known in computer
science [30]). However, the advantage of the Ulam networks
is based on the deep mathematical and physical studies per-
formed on the dynamical systems over the last few decades
(see, e.g., [4,31,32]).

In this paper we show that the Ulam method applied to
two-dimensional dissipative dynamical maps generates a
type of directed networks which we call the Ulam networks.
We present here numerical and analytical studies of certain
properties of the Google matrix of such networks.

The paper is organized as follows: in Sec. II we give the
description of the Chirikov typical map and the way the
Ulam network is constructed on the basis of this map with
the corresponding Google matrix; the properties of this map
and network are also described here; in Sec. III the properties
of the eigenvalues and eigenstates of the Google matrix are
analyzed in detail, including the delocalization transition for
the PageRank, the fractal Weyl law, and the global contrac-
tion properties; a summary of the results is presented in Sec.
Iv.

II. ULAM NETWORKS OF DYNAMICAL MAPS
A. Chirikov typical map

To construct an Ulam network and a generated by it
Google matrix we use a dynamical two-dimensional dissipa-
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tive map. The dynamical system is described by the Chirikov
typical map introduced in 1969 for a description of continu-
ous chaotic flows [18]:

Vi1 = MY+ sin(x, + 60,), Xy =X+ Vg ()

Here the dynamical variables x,y are taken at integer mo-
ments of time 7. Also x has a meaning of phase variable and
y is a conjugated momentum or action. The phases 6,=6,,
are T random phases periodically repeated along time z. We
stress that their 7" values are chosen and fixed once and they
are not changed during the dynamical evolution of x,y. We
consider the map in the region of Fig. 1 (0=x<2mw, -7
=y <) with the 27-periodic boundary conditions. The pa-
rameter 0 < n=1 gives the global dissipation. The properties
of the symplectic map at =1 have been studied recently in
detail [19]. The dynamics is globally chaotic for k>k,
~25/T%? and the Kolmogorov-Sinai entropy is #h
~0.29k*3 (more details about chaotic dynamics and the
Kolmogorov-Sinai entropy can be found in [4,5,31,32]).

In this study we use two random sets of phases 6, with
T=10 and T=20. Their values are given in the Appendix. We
also fixed the dissipation parameter 7=0.99 for 7=10 and
7=0.97 for T=20. We call these two sets of parameters as
T10 and 720 sets, respectively. The majority of data are ob-
tained at k=0.22 for the set 710 and at k=0.3 for the set 720
(see Fig. 1). These are two main working points for this
work.

For the set T10 (k=0.22, 7=0.99) we have the theoreti-
cal value of the Kolmogorov-Sinai entropy h=0.29k%>
=0.105 for the symplectic map at =1 [19]. The actual value
at =1 is determined numerically by the computation of the
Lyapunov exponent and has a value #=0.0851. For 7=0.99
we also have the global dissipation rate vy.=-T1In 7
=0.1005 after the map period (which is equal to T iterations).
The global contraction factor is I'.=%"=exp(-7,)=0.9043.
For a weak dissipation the fractal dimension d of the limiting
set can be approximately estimated in a usual way (see, e.g.,
[32]) as d=2-1,/(Th)=1.882.

In a similar way for the set 720 (k=0.3, 5=0.97) we
have the theoretical value 7=0.29k*3=0.1299, while the ac-
tual numerical value is h=0.1081. Also here y.=—T1n g
=0.609, I'.=0.5437, and the estimated fractal dimension of
the limiting set is d=2—1,./(Th)=1.718.

The bifurcation diagrams for the sets 710 and 720 are
shown in Figs. 2 and 3, respectively. On large time scales we
clearly see parameter k regions with simple and chaotic at-
tractors. For a shorter time scales a distinction between two
regimes becomes less pronounced. This means that during a
long time a trajectory moves between few simple attractors
(which are represented by short periodic orbits and are
clearly seen in Fig. 1 in the left column) before a final con-
vergence is reached.

B. Network construction and distribution of links

The Ulam network for the Chirikov typical map [Eq. (2)]
is constructed in the following way. The whole phase space
region 277 X 277 is divided into N=N, X N, cells (N,=N,) and
N, trajectories are propagated from each given cell j during
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FIG. 2. Bifurcation diagram showing values of y vs map param-
eter k for the set 710 of the Chirikov typical map [Eq. (2)]. The
values of y, obtained from ten trajectories with initial random po-
sitions in the phase space region, are shown for integer moments of
time 100<t/T=110 (left panel) and 10*<z/T<10%+100 (right
panel).

T map iterations which form the period of the map. After that
the elements of matrix S;; are computed as S;=N,/N.(j),
where N; is a number of trajectories arrived from a cell j to
cell i. In this way we have by a definition X;5;;=1. Such S
gives a coarse-grained approximation of the Perron-
Frobenius operator for the map [Eq. (2)]. The Google matrix
G of size N is constructed from S according to Eq. (1). To
construct §;; we usually use N.= 10* but the properties of S
are not affected by a variation in N, in the interval 10°
=N,=10°. Since the cell size is very small it is unimportant
in what way N, trajectories are distributed inside the cell.
The index j of the PageRank vector p; is a function of cell
indexes (i,,i,) which is used for the phase space plot of p; in
Fig. 1. Up to statistical fluctuations, the values of S;; remain
the same for homogeneous or random distribution of N, tra-
jectories inside a cell. We note that in our system we have
only one nondegenerate eigenvalue A=1 of G at =1 with
the corresponding eigenvector. The standard numerical meth-
ods find this value without any problem for moderate sizes
N. However, at very large N the quasidegeneracy with other
eigenvalues, which approach to unity exponentially with N
[see Fig. 7(a) below in the text], can go beyond the numeri-
cal accuracy of diagonalization. We note that in real WWW
there are certain exact degeneracies of A=1 eigenvalue
which we believe are linked with a small number of links
and thus a small number of different matrix elements in S
matrix (see, e.g., [11,12,33]). In the Ulam networks the ma-
trix elements fluctuate with the number of trajectories N,. and
there are practically no matrix elements with exactly the
same values. In any case for the matrix sizes shown in Fig.
7(a) we have quasidegeneracy near A=1 at a=1, while for
the same sizes of the university networks, considered in
[17,33], we obtain exact degeneracy of A=1 eigenvalue (up
to a computer precision). Thus the structure of degeneracy of
A=1 is different in both types of networks.

FIG. 3. Same as in Fig. 2 for the set 720.
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Up to N=22 500 we used exact diagonalization of G to
determine all eigenvalues \; and right eigenvectors ;, for
larger N up to N=1.44 X 10° we used the PRA to determine
the PageRank vector. The majority of data are presented for
two typical sets 710 and 720 of parameters of the map [Eq.
(2)] and the PageRanks for various values of a are shown in
Fig. 1. For these sets the dynamics has a few fixed point
attractors but it takes a long time 7~ 103 to reach them. Dur-
ing this time a trajectory visits various regions of phase
space.

It is important to note that the discreteness of phase space,
linked to a finite cell size, produces an important physical
effect which is absent in the original continuous map [Eq.
(2)]: effectively it introduces an additional noise which am-
plitude o is approximately o~ 2/ VN. This becomes espe-
cially clear for the symplectic case at »=1 and at small val-
ues of k at T=1 (all 6, are the same). In this case the map is
reduced to the Chirikov standard map [31] and the continu-
ous map dynamics is bounded by the invariant Kolmogorov-
Arnold-Moser (KAM) curves. However, the discreteness of
phase space allows jump from one cell to another and thus to
go from one invariant curve to another one. This leads to a
diffusion in y and appearance of a homogeneous ergodic
state at A=1. A direct analysis also shows that at any finite
cell size the operator S has a homogeneous ergodic state with
A=1, we also checked this via numerical diagonalization of
matrix sizes N=20 000. This example shows that the Ulam
conjecture is not valid for quasi-integrable symplectic maps
in the KAM regime.

The physical origin of the difference between the continu-
ous map and the finite-size cell approximation is due to in-
troduction of an effective noise term o, in rhs of Eq. (2)
induced by a finite cell size. Due to this noise the trajectories
diffuse over all region —7 <y < after a diffusive time scale
tp~ 7/ 0~ even if the continuous map is in the KAM regime
with bounded dynamics in y. Hence, here o~27/N is an
effective amplitude of noise introduced by cell discreteness.

Even if this o-noise leads to a drastic change in dynamics
for quasi-integrable regime its effects are not very important
in the case of chaotic dynamics where noise gives only a
small additional variation as compared to strong dynamical
variations induced by dynamical chaos. With such a physical
understanding of discreteness effects we continue to investi-
gate the properties of the Ulam networks. However, we stress
that the o-noise is local in the phase space and hence it is
qualitatively different from the Google term a which gener-
ates stochastic jumps over all sites.

In Figs. 4 and 5 we show the distributions of ingoing
P;,(x) and outgoing P,,(k) links « in the Ulam network
presented by S matrix generated by the map [Eq. (2)] as
described above. These distributions are satisfactory de-
scribed by a scale-free algebraic decay P~ 1/k* with u
~1.86, 1.11 for ingoing and 1.91, 1.46 outgoing links at 710
and 720, respectively, and a typical number of links per node
Kk~ 10 (see Figs. 4 and 5). Such values are compatible with
the WWW data of scale-free type where pw=2.1, 2.7 for
ingoing, outgoing links [3,7]. However, we may also note an
appearance of certain deviations at large values of «. Indeed,
for a dynamical system a large number of links appears due
to exponential stretching of one cell after 7 map iterations
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FIG. 4. (Color online) Differential distribution of number of
nodes with ingoing P;,(k) (blue/black) and outgoing P, (k) (red/
gray) links « for sets T10 (left) and 720 (right) (top and bottom
curves at log;y k=0.6 correspond to red/gray and blue/black
curves). The straight dashed lines give the algebraic fit P(x)~ x*
with the exponent w=1.86, 1.11 (710,720) for ingoing and u
=191, 1.46 (T10,T20) outgoing links. Here N=1.44X 10° and
P(k) gives a number of nodes at a given integer number of links «
for this matrix size. Isolated blue/black point at k=0 shows that in
the whole matrix there is a significant number of nodes with zero
ingoing links. We note that the WWW is characterized by the ex-
ponents pu=2.1, 2.7 for ingoing and outgoing links respectively
(see, e.g., [3,7]).

that gives a typical number of links k~exp(hT). It is pos-
sible that during the dynamical evolution much larger values
of stretching can appear. Indeed, the comparison of two cases
at k=0.22 and k=0.6 for the set 710 in Fig. 5 shows that for
larger k the scale-free distribution continues to much larger
values of «>200 while for smaller k the scale-free type
decay stops around «=50. For the set 720 the stretching is
stronger and the scale-free decay continues up to larger val-
ues of «.

It is clear that for the Ulam networks discussed here one
has a rapid exponential decay of links distribution at asymp-
totically large link number x. However, due to an exponen-
tial growth of typical k~exp(hT) a scale-free-type decay
can be realized up to very large « by increasing 7. In these
studies we stay at the chosen working points where a scale-
free decay remains dominant for matrix sizes of the order of
N~10°-10%. We note that in our model the algebraic decay
of links distribution starts from finite values of j= 7, while in

.2
logyg K

1 2
logio K

FIG. 5. (Color online) Same as in Fig. 3 for the set 710 at k
=0.22 (left) (same as Fig. 4 left) and k=0.6 (right) and N=3.6
X 10°. The fit gives the exponent u=1.87, 1.92 for ingoing (blue/
black), ourgoing (red/gray) links at k=0.22 (left) and u=1.70, 1.83
for ingoing (blue), outgoing (red) links at k=0.6 (right) (top and
bottom curves at log;, k=0.8 correspond to red/gray and blue/black
curves). Isolated blue/black point at k=0 shows that in the whole
matrix there is a significant number of nodes with zero ingoing
links.
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the WWW networks it starts from j= 1. However, the main
interest is to the properties at large j where we have a large
range of algebraic decay of links distribution.

Finally we note that the models of the Google matrix
generated by the Ulam networks are most interesting for dis-
sipative maps. Indeed, by construction the left eigenvector of
the Google matrix /G=¢; at A\=1 is a homogeneous vector
" =const As a result for symplectic maps the right vector of
PageRank p; is also homogeneous. Only dissipation term
generates an inhomogeneous decay of p;.

III. PROPERTIES OF EIGENVALUES AND EIGENSTATES
A. Delocalization transition for PageRank with «

The variation in PageRank p; with « is shown in Fig. 1
for two sets T10 and 720. The distribution p; is plotted for
each cell of the phase space (x,y), the numbering of cells is
done by the integer grid n, Xn, which has a certain corre-
spondence with the index j which numerates the values of p;
in the decreasing order with j. At a=1 the distribution p; is
concentrated only on a few local spots corresponding to fixed
point attractors. Physically this happens due to presence of o
noise, induced by cell discretization, which leads to transi-
tions between various fixed points. With the decrease in «
the PageRank starts to spread over a strange attractor set.
The properties of strange attractors in dynamical dissipative
systems are described in [32]. In the map [Eq. (2)] the
strange attractor appears at larger values of k (namely, k
>(0.5 for T10 and k>0.34 for 720, see Figs. 2 and 3) but a
presence of effective noise induced by o and 1—a terms
leads to an earlier emergence of strange attractor. Below a
certain value a< «a, the PageRank becomes completely de-
localized over the strange attractor as it is clearly seen in Fig.
1 for the set T'10.

The dependence of p; on j is shown in more detail in Fig.
6. For a=1 PageRank shows a rapid drop with j that can be
fitted by an exponential Boltzmann type distribution p;
~exp(-by,j/D,), where b is a numerical constant (b=~ 1.4;
2.1 for T10; T20), y.=-T In 7 is the global dissipation rate,
and D,=0’N=~(2m)? is o noise diffusion [dashed lines in
Figs. 6(a) and 6(d)]. Such an exponential decay results from
the Fokker-Planck description of the map [Eq. (2)] in the
presence of o noise term which gives diffusive transitions on
nearby cells. For a<1, transitions of a random surfer, intro-
duced by Google, give a significant modification of PageR-
ank which shows an algebraic decay p;~1/ j# with the ex-
ponent B dependent on « [Figs. 6(b)-6(f)]; for the set 720 at
a=0.95 we obtain B=0.88 being close to the numerical
value found for the WWW [3,7] which has 8=0.9. This fact
shows that the Ulam networks can model certain properties
of the WWW, but one should keep in mind existing signifi-
cant differences between these two networks (e.g., in our
Ulam network we have exponential decay of links distribu-
tion at large number of links). However, 8 decreases with
the decrease in « and for 710 set a delocalization takes place
for @=0.85 so that p; spreads homogeneously over the
strange attractor [see Fig. 1 top right panel and Fig. 6(c)].
For T20 set p;~ #;,(j) remains localized at «=0.85. To de-
fine the localization in a more quantitative way we use a
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FIG. 6. (Color online) PageRank distribution p; for N=10*% 9
X 104, 3.6 X 10%, and 1.44 X 10° (larger N have more dark and more
long curves in (b), (c), (e), and (f); in (a) this order of N is for
curves from bottom to top (curves for N=3.6X 10 and 1.44 X 10°
practically coincide in this panel) and in (d) this order of N is for
curves from top to bottom at j=500 (curves for N=9 X 104, 3.6
X 10%, and 1.44 X 10° practically coincide in this panel); for online
version we note that the above order of N values corresponds to red,
magenta, green, and blue curves, respectively). The dashed straight
lines show fits p;~ 1/j8 with B: (b) 0.48, (e) 0.88, and (f) 0.60.
Dashed lines in panels (a) and (d) show an exponential Boltzmann
decay (see text, lines are shifted in j for clarity). Other parameters,
including the values of «, and panel order are as in Fig. 1. In panels
(a) and (d) the curves at large N become superimposed. Here and
below logarithms are decimal.

participation ratio (PAR) defined for the eigenstate i,(j) as
E=C(NP?/Z | (j)I*. We define that the PageRank is
localized if its & remains finite at large N. We use this defi-
nition of PAR ¢ for all eigenvectors #;(j) omitting the index
i. This quantity PAR is broadly used in solid state systems
with disorder (see, e.g., [14-17]); & gives an effective num-
ber of nodes populated by an eigenstate.

B. Properties of other eigenvectors

To understand the origin of the delocalization transition in
a we analyze in Fig. 7 the properties of all eigenvalues \;
and eigenvectors ; with their PAR & Due to o noise acti-
vation transitions take place between the attractor fixed
points leading to states with \; being exponentially close to
N=1 [Fig. 7(a)]. The convergence to |\|=1 is exponential in
N for certain states and may lead to numerical problems at
very large N. However, the standard numerical diagonaliza-
tion methods remained stable for the values of N used in our
studies.

The distribution of \; in the complex plane is shown in
Figs. 7(c) and 7(d): there are \; approaching A=1 mainly
along the real axis but a majority of \; are distributed inside
a circle of finite radius around \=0; this radius decreases
with the increase in global dissipation from v,.=0.10 for set
T10 to y.=0.61 for 720. The PAR values for states inside the
circle have typical values 4=¢=300 shown by grayness.
The dependence of & on y=-2 In|\| and N shows that the
eigenstates inside the circle remain localized at large N [Fig.
7(b)]. We attribute this to the fact that at large N the diffusion
due to o noise in presence of dissipation leads to spreading
only over a finite number of cells and thus ¢ remains
bounded. This &(y,N) dependence is different from one ob-
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FIG. 7. (Color online) (a) Dependence of gap 1—|\| on Google
matrix size N for few eigenstates with |\| most close to 1, set T10,
a=1; (b) dependence of PAR ¢ on y=-2 In|\| for N=2500, 5625,
8100, 10%, 14 400 for set 710, @=1 (curves from top to bottom at
y=4, in online version this order of curves corresponds to colors
red, magenta, green, blue, black); (c) complex plane of eigenvalues
\ for set T10 with their PAR ¢ values shown by grayness (black/
blue for minimal é=~4, gray/light magenta for maximal &= 300;
here a=1, N=1.44 X 10%); (d) same as (c) but for set 720.

tained in [17] for the Albert-Barabasi model, the comparison
with data from WWW University networks is less conclusive
due to strong fluctuations from one network to another (see
Fig. 4 in [17]): an average growth of £ is visible there even if
at N~ 10* the values of £ are comparable with those of Fig.
7(b). Globally our data of Fig. 7 show that the diffusive
modes at |\;/] <1 remain localized on a number of nodes &
<N.

We also stress an important property of eigenvalues and
eigenvectors with 0 <|\;/<1. Our numerical data show that
for the states with 0<<|\;| <1 their & are independent of a
(\; are simply rescaled by a factor « according to [3]). This
happens due to a specific property of (1-a)E/N term in G,
which is constructed from a homogeneous vector with rank
equal to unity. Right eigenvectors are orthogonal to the ho-
mogeneous left vector and hence (1 - a) term affects only the
PageRank but not other eigenvectors. This property can be
easily obtained from the theorems for eigenvalues depen-
dence on alpha presented in [3].

C. Fractal Weyl law for Google matrix

Another interesting characteristic of G at a=1 is the dis-
tribution of eigenvalues in the complex plain. In this subsec-
tion we study the density distribution dW(y)/dy over 7y
linked to the absolute value |\|. Here dW(y) gives the num-
ber of states in the interval dy with a certain global numeri-
cal normalization factor (see Fig. 8). The data presented in
Fig. 8 show that its form becomes size independent in the
limit of large N. At small y<<3 the density decreases ap-
proximately linearly with y without any large gap. We find
that the total number of states NV, with finite y<<y,=~35 grows
algebraically as N,=AN" with v<1 (Fig. 8 inset). We inter-
pret this result on the basis of the fractal Weyl law estab-
lished recently for nonunitary matrices with fractal eigen-
states (see, e.g., [34,35] and references therein). According to
this law the exponent v is v=d—1 where d is the fractal
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FIG. 8. Probability distribution dW(vy)/dy for set T10, a=1 at
N=2.5X10%(X), 10*(+), 1.44 X 10* (dots); W(y) is normalized by
the number of states N,y=0.55N0'85 with y<<6. Inset: dependence of
number of states N,, with y<y, on N for sets T10 (circles, y,=6)
and 720 (triangles, ,=3); dashed lines show the fit N,=AN” with
A=0.55,v=0.85 and A=0.97,v=0.61 respectively.

dimension of the dynamical system. Approximately we have
d—1=1-+,/(Th) [32,35] that gives »=0.88, 0.72 for the
sets 710 and 720 with the numerical values of ., h given
above. These values are in a good agreement with the fit data
v=0.85, 0.61 of Fig. 8 inset. The fact that »<<1 implies that
almost all states have A=0 in the limit of large N (in this
work we do not discuss the properties of these degenerate
states with large £~ N).

It is interesting to note that the fractal Weyl law is usually
discussed for the open quantum chaos systems (see [34,35]
and references therein). There the matrix size is inversely
proportional to an effective Planck constant No 1/#. For the
Ulam networks generated by dynamical attractors a cell size
in the phase space places the role of effective . This opens
interesting parallels between quantum chaotic scattering and
discrete matrix representation of the Perron-Frobenius opera-
tors of dynamical systems.

D. PageRank delocalization again

The dependence of PAR £ of the PageRank on « and N is
shown in Fig. 9. It permits to determine the critical value a,
below which PageRank becomes delocalized showing &
growing with N. According to this definition we have ¢ in-
dependent of large N for a> a,, while for < a, the PAR ¢
grows with N. The obtained data give a,.=~0.95, 0.8 for T10
and T20. Further investigations are needed to understand the
dependence of a, on system parameters. Here we make a
conjecture that 1—a,~C7y,<1 with a numerical constant
C=0.3. Indeed, for larger dissipation rate y,=-7 In 7 a ra-
dius of a circle with large density of \; in the complex plane
\ becomes smaller [see Figs. 7(c) and 7(d)] and thus larger
values of 1 —a are required to have a significant contribution
of these excited relaxation modes to the PageRank. Also the
data of [35] for systems with absorption rate . show a low
density of states at y<<17, so that it is natural to expect that
one should have 1—-a.~ 7. to get a significant contribution
of delocalized relaxation modes from a strange attractor set
to the PageRank. It is quite probable that C depends in ad-
dition on system parameters. Indeed, even at fixed 7. and
a=0.99 being rather close to 1 it is possible to have a tran-
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FIG. 9. (Color online) Dependence of PageRank & on « for set
T10 at N=5625 (dotted magenta/gray), 1.44 X 10* (dotted red/gray,
9x 10* (dashed red/gray, 6.4X10° (full red/gray), (these four
curves follow from bottom to top at a=0.9 for small to large values
of N respectively); and for set 720 at N=1.44 X 10* (dotted blue/
black), 9X10* (dashed blue/black), 6.4 103 (full blue/black),
(these three blue/black curves follow from bottom to top at a=0.6).
Inset shows dependence of & on k for set 710 at «=0.99 with N
=1.44 X 10* (dotted red/gray), 9 X 10* (dashed red/gray), 3.6 X 10°
(full red/gray) (this corresponds to the order of curves from top to
bottom at k=0.45).

sition from localized to delocalized PageRank by increasing
k in the map [Eq. (2)] (see Fig. 9 inset and Fig. 10). This
transition in k takes place approximately at k=~0.55 when
fixed point attractors merge into a strange attractor (see the
bifurcation diagram in Fig. 2). A peak in & around k=~ 0.38 is
related to birth and disappearance of a strange attractor in a
narrow interval of k at k= 0.38. At the same time an increase
in k from 0.22 to 0.6 practically does not affect the link
distributions P(k) changing the value of u only by 10% (see
Fig. 5). This shows that the correlations inside the directed
network generated by the map [Eq. (2)] play a very impor-
tant role.

E. Global contraction

As discussed above a nontrivial decay of the PageRank p;
in our Ulam network appears due to a dissipative nature of
the map [Eq. (2)]. Indeed, since <1 there is a global con-
traction of the phase space area by a factor I'.= 7" after T
iterations of the map (after its period). Such a property is
very natural for the continuous map but it is more difficult to
see its signature from the matrix form of the Perron-
Frobenius operator after the introduction of discreteness of
the phase space.

FIG. 10. (Color online) Same as Fig. 1 for the set T10 at «
=0.99, N=3.6 X 10° at k=0.22 (left) and k=0.6 (right); PAR £ are
the same as in the inset of Fig. 9.
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FIG. 11. (Color online) Dependence of the network contraction
factor I' on the level g of probability distribution over the network
nodes (see text). Left panel shows data for the set 710 at k=0.22,
right panel shows data for the set 720 at k=0.3 for the Ulam net-
work of map [Eq. (2)]. The size of the network is N=10% 4
X 10%,16 X 10* (curves from top to bottom at ¢g=0.01). The dashed
line (in left/right panels) shows the contraction I'.= 7" of the con-
tinuous map [Eq. (2)] corresponding to the network with N= and
to values # and T for the sets 710 and 720, respectively.

Nevertheless this contraction can be extracted from the
matrix G taken at a=1. To extract it we apply G with «
=1 to a homogeneous vector p}h)= 1/N getting the new vec-
tor p’=Gp™ and count the number of nodes Ny where
p">g/N and 0<g<1 is some positive number character-
izing the level of the distribution. Then the contraction of the
network is defined as a fraction of such states: I'=Np/N.

The result of computation of the contraction factor for the
Ulam network of the map [Eq. (2)] for the sets T10, 720 is
shown in Fig. 11. The network contraction parameter I" is
independent of ¢ in a large interval 107*<¢=0.1 and it con-
verges to the contraction value I',. of a continuous map in the
limit of large matrix size N.

We think that the Google matrix of WWW networks can
be also characterized by a global contraction factor and it
would be interesting to study its properties in more detail.
However, this remains a task for future studies.

IV. SUMMARY

In summary, we demonstrated that the Perron-Frobenius
operator built from a simple dissipative map with dynamical
attractors generates a scale-free directed network with three
properties similar to the WWW: compatible degree distribu-
tions (Figs. 4 and 5), compatible power-law PageRank decay
(Fig. 6), its sensitivity for a near 1 and quasidegeneracy of
eigenvalues near unity. The networks and their Google ma-
trices are obtained on the basis of the Ulam method for
coarse graining of the Perron-Frobenius operator and thus
can be viewed as the Ulam networks or Ulam graphs. In this
formulation the popular websites can be considered as dy-
namical fixed point attractors which help to generate global
scale-free properties of the network. The PageRank of the
system becomes delocalized for « smaller than a certain
critical value, such a delocalization is linked to emergence of
a strange attractor. Even for « very close to unity a moderate
change in system parameters can drive the system to a
strange attractor regime with a complete delocalization of the
PageRank making the Google search inefficient. In view of a
great importance of the Google search for WWW [3,7] and
its new emerging applications [36] it may be rather useful to
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study in more detail the properties of the Google matrix gen-
erated by simple dynamical maps. We will present our results
for the real networks in a separate work [33].

At the present state the Google matrix of WWW is stable
in respect to variations of « at typical values a=0.5-0.85
(indications for that can be found e.g., in [9-11]). This is
different from the cases 710 and 720 analyzed in our studies
which show that there the PageRank vector becomes very
flat in index for @<, when the delocalization takes place.
In this delocalized regime of the Ulam network the PageR-
ank spreads over enormously large number of states growing
to infinity with the increase in the matrix size N and hence
the classification via the PageRank becomes inefficient. It is
not excluded that, since WWW evolves with time, the
WWW may become more sensitive to changes of a. Also the
Google search can be applied to a large variety of other
important networks (see, e.g., [11,36]) which may be more
sensitive to various parameter variations.

Therefore, it is quite possible that the Ulam networks dis-
cussed here only partially simulate the properties of the
WWW. For example our model shows certain deviations for
distribution of links for small and very large number of links
(see discussion above). However, the Ulam networks are
easy to generate and at the same time they show a large
variety of rich interesting properties. The parallels between
the Ulam networks and the actual WWW can be instructive
for deeper understanding of both. Therefore, we think that
their further studies will give us better understanding of the
Google matrix properties. The studies of the Ulam networks
will also lead to a better understanding of intricate spectral
properties of the Perron-Frobenius operators. The application
of the thermodynamical formalism [37,38] to the spectra of
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such operators can help to understand their properties in a
better way.
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APPENDIX

The Chirikov typical map [Eq. (2)] is studied here for the
following random phases 6,/2 for the set 710: 0.562 579,
0.279 666, 0.864 585, 0.654 365, 0.821 395, 0.981 145,
0.478 149, 0.834 115, 0.180 307, and 0.159 02, and for
the set 720: 0.415733267 627, 0.310 795 551 489,
0.632 094 907 846, 0.749 488 203 411, 0.924 301 928 270,
0.635 937 571 045, 0.118 768 635 110, 0.647 524 548 037,
0.651 928 927 275, 0.952 312 529 146, 0.370 553 510 280,
0.810 837 257 644, 0.814 808 044 380, 0.834 758 628 241,
0.993 694 010 264, 0.702 057 578 688, 0.828 693 568 678,

0.855 421 638 697, 0.278 538 720 979, and
0.653 773 338 142. The numbers are ordered in the serpen-
tine order for r=1,2,...,T. After each T iterations the values

of y are reduced inside the interval (-, 7) corresponding to
the periodic boundary conditions.
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